

Cryogenic Cathode Emission for High Brightness RF Photoinjectors

Gerard Lawler¹, Atsushi Fukusawa¹, Zenghai Li², Siddarth Karkare³, Nathan Majernik¹, Jake Parsons¹, Monika Yadav¹, Arathi Suraj¹, and James Rosenzweig¹ ¹ UCLA, Los Angeles, CA 90095 ² SLAC, Menlo Park, CA, 94025 ³ ASU, Tempe, AZ, 85281

- 1. Cryogenic photoemission introduction & motivations
- 2. RF test cavity
- 3. Beamline & implementation status
- 4. Future directions/conclusions

- Emission properties of photocathodes change @ cryogenic temperatures (<93K)
- Where $hv \gg \varphi eff$ scaling as below

 $k_b T_c = (h\nu - \phi_{\text{eff}})/3$ $QE = N_{e-}/N_{\gamma} \propto (h\nu - \phi_{\text{eff}})^2$

- Cu photocathodes emission temp ranges from ~100 meV to 1 eV depending on wavelength
- Brightness scaling (below)
- From UXFEL NJP, note 6D brightness importance

$$B_{e,b} \approx \frac{2ec\varepsilon_0}{k_B T_c} (E_0 \sin\phi_0)^2$$

D. Dowell and J. Schmerge, Phys. Rev. ST Accel. Beams 12, 074201 (2009).

Direction normal to surface

1. Cryogenic metallic photoemission

- Near threshold emission from tail of Fermi-Dirac distribution
- Now including full FD distribution with temperature dependence (right)
- hv → \$\overline\$ \$\overline\$
- Very low QE, so higher laser fluence needed

10⁻⁵

10-6

10⁻⁷

10-8

1. Cryogenic metallic cathode issues

- Easiest if Cu satisfies all cathode requirements
- Extremely challenging due to non-linear emission
- 100 pC from 75 um rms spot size at 250 MV/m accelerating field, 38 nm-rad intrinsic emittance → 130 meV MTE, ~10¹² e⁻/cm^2
- 50 fs pulse could be better for 5 ps pulse
- Need to characterize cathodes in these extreme condition

J. K. Bae, I. Bazarov, P. Musumeci, S. Karkare, H. Padmore, and J. Maxson, J. Appl. Phys. 124, 244903 (2018).

1. Cryogenic semiconductor cathodes

- High QE photocathode, many orders of magnitude higher than Cu, promising
- Alkali antimonides, Cs2Te

- Field emission could be an issue due to lower work functions/roughness.

- Cs/GaN or n-doped polar GaN
 - High QE in UV, high work function
 - Could result in very low MTE
 - never been tested in photoinjectors
 - Potential vacuum concerns
- Reduction of MTE at cryogenic temps observed

G. S. Gevorkyan et al., Phys. Rev. Accel. Beams, vol. 21,p. 093 401, 9 Sep. 2018.

L. Cultrera et al., Appl. Phys. Lett. 103, 103504 (2013).

- · Generalized cathode testbed schematic to right
- Cryogenic operation of gun advantage from RF perspective as well
- Cryogenic DC guns tests have been successful
- Development of cryogenic RF test bed becomes critical UCXFEL
- Full multi-cell photoinjector gun (below) too complex for cathode measurements
- 1/2 cell gun sufficient

- Reentrant cavity with high shunt impedance Tantawi-style
- Cryogenic temperature provided RF stability and cathode studies
- 2.9 factor improvement of Q_0 from 300K to 77K
- Cryogenic load lock and replaceable cathode plug coupling

E field magnitude

Parameters	Value
Launch field	120-250 MV/m
Operating temp	45K-77K
# of cells	1/2
Cavity frequency	5.712 GHz
Beta	4 @ 77K
Q_ext	6056
Q_0	24750

- Drawings with fully removable backplane based on FERMI gun design
- Fabrication at Comeb

- Simplified phase 1 of cryogenic test bed design
- Measurements of QE for cryogenic copper

- Simplified phase 1 of cryogenic test bed design
- Measurements of QE for cryogenic copper

5.2 m 1.37m

- Simplified phase 1 of cryogenic test bed design
- Measurements of QE for cryogenic copper

- Simplified phase 1 of cryogenic test bed design
- Measurements of QE for cryogenic copper

- Simplified phase 1 of cryogenic test bed design
- Measurements of QE for cryogenic copper

3. Cathode integration cont.

- For 1st phase of test bed, CF flange sealed off w/ blank from back of cavity and test copper cathode
- Later test involving UHV transfer of cathodes from transfer chamber into gun cell
- Molybdenum substrate puck difficult to achieve knife edge seal UCLA Pegaus experience
- Calculation of radii of hole and plug below and stress from contraction on plug to right and stress calculations below
- Cornell-style leaf spring plug holder complex
- Simplest setup for properties tests at cryogenic temperature (right)

- Phase 1 initial tests of QE will lead to phase 2 MTE measurement of cryogenic copper cathode backplane
- Parallel development of load lock infrastructure
- Phase 2 measurements of QE and MTE of cryogenic semi conductor cathodes

D. Marx et al. Phys. Rev. Accel. Beams 21, 102802 (2018).

- 1. Studies of cathodes in extreme conditions necessary for UCXFEL application
- 2. Cryogenic temperatures are important regime of study
- 3. UCLA test beds for these studies progressing nominally

Thank You

- D. Dowell and J. Schmerge, Phys. Rev. ST Accel. Beams 12, 074201 (2009).
- M. C. Divall, E. Prat, S. Bettoni, C. Vicario, A. Trisorio, T. Schietinger, and C. P. Hauri, Phys. Rev. ST Accel. Beams 18, 033401 (2015).
- T. Vecchione, Proceedings of FEL2013 (JACOW, 2013), TUPSO83.
- J. Feng, J. Nasiatka, W. Wan, S. Karkare, J. Smedley, and H. A. Padmore, Appl. Phys. Lett. 107, 134101 (2015).
- L. Cultrera, I. Bazarov, A. Bartnik, B. Dunham, S. Karkare, R. Merluzzi, and M. Nichols, Appl. Phys. Lett. 99, 152110 (2011).
- L. Cultrera, S. Karkare, B. Lillard, A. Bartnik, I. Bazarov, B. Dunham, W. Schaff, and K. Smolenski, Appl. Phys. Lett. 103, 103504 (2013).
- G. S. Gevorkyan, S. Karkare, S. Emamian, I. V. Bazarov, and H. A. Padmore, Phys. Rev. Accel. Beams, vol. 21,p. 093 401, 9 Sep. 2018.
- I. Bazarov et al., Phys. Rev. Lett. 102, 104801 (2009)
- J.B. Rosenzweig, A. Cahill, B. Carlsten et al.Nuclear Inst. and Methods in Physics Research, A 909 (2018) 224– 228
- D. H. Dowell and J. F. Schmerge, Phys.Rev. ST Accel. Beams, vol. 12, p. 074 201, 7 Jul. 2009.
- J. Maxson, L. Cultrera, C. Gulliford, and I. Bazarov, Applied Physics Letters, vol. 106, no. 23, p. 234 102, 2015
- H. Lee, X. Liu, L. Cultrera, B. Dunham, V. O. Kostroun, and I. V. Bazarov Rev. Sci. Instrum. 89, 083303 (2018).
- J B Rosenzweig et al 2020 New J. Phys. 22 093067
- G. E. Lawler, A. Fukasawa, N. Majernik, M. Yadav, A. Suraj, and J. B. Rosenzweig, in Proceedings of IPAC2021 [Submitted], 2021
- D. Marx et al. Phys. Rev. Accel. Beams 21, 102802 (2018).